A new study has utilized a novel method to estimate long-term ozone exposure to quantify the health burden from long-term ozone exposure in three major regions of the world.
For the study, the researchers used 2015 data from ground-based monitoring networks in the USA, Europe, and China to estimate long-term O3 exposure. They then calculated premature mortalities using exposure-response relationships from two American Cancer Society (ACS) cancer prevention studies.
First, health impacts attributable to long-term O3 exposure are higher when using the newest ACS CPS-II cohort analysis. Plus, the impacts are expanded further if the association between long-term O3 exposure and cardiovascular mortality is indeed shown to be causal and included in the total health burden estimates.
Second, results from the newest ACS CPS-II cohort analysis suggest that O3 exposure should be considered year-round. This is particularly relevant for the three regions included in this analysis, where the seasonal cycle and regional distributions of O3 have shifted over the last few decades."
Finally, these results also highlighted the importance of accurately estimating O3 exposure and the consequences of high exposure bias in estimating impacts for health assessments.
For the study, the researchers used 2015 data from ground-based monitoring networks in the USA, Europe, and China to estimate long-term O3 exposure. They then calculated premature mortalities using exposure-response relationships from two American Cancer Society (ACS) cancer prevention studies.
First, health impacts attributable to long-term O3 exposure are higher when using the newest ACS CPS-II cohort analysis. Plus, the impacts are expanded further if the association between long-term O3 exposure and cardiovascular mortality is indeed shown to be causal and included in the total health burden estimates.
Second, results from the newest ACS CPS-II cohort analysis suggest that O3 exposure should be considered year-round. This is particularly relevant for the three regions included in this analysis, where the seasonal cycle and regional distributions of O3 have shifted over the last few decades."
Finally, these results also highlighted the importance of accurately estimating O3 exposure and the consequences of high exposure bias in estimating impacts for health assessments.
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.